Komparator non Inverting Vref =0




1. Tujuan [kembali]

  • Dapat memahami apa yang dimaksud dengan Komparator Non-Inverting
  • Dapat memahami rangkaian Komparator Non-Inverting
  • Dapat mensimulasikan rangkaian Komparator Non-Inverting

 

2. Alat dan Bahan [kembali]
Alat

1. Voltmeter DC



Tegangan listrik DC ini digunakan pada rangkaian elektronika dimana mempunyai daya yang relatif kecil. Untuk mengukur tegangan ini voltmeter dipasang secara paralel pada rangkaian
   

2. Baterai

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik

3. DC dan Sine Generator

Generator Sine digunakan untuk menghasilkan sinyal AC, sedangkan generator DC digunakan untuk menghasilkan sinyal DC.


Bahan

1. Resistor

Resistor berfungsi untuk menghambat serta mengatur arus listrik dalam rangkaian.


2. Transistor NPN


Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

3. Operational Amplifier


Operational Amplifier atau yang lebih sering disebut op amp merupakan suatu komponen elektronika analog yang berfungsi sebagai penguat atau amplifier multiguna yang diwujudkan dalam sebuah IC op-amp.


4. Dioda

Diode (diode) adalah komponen elektronika aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya


Komponen Input

1. Sensor LDR

Light Dependent Resistor atau disingkat dengan LDR adalah jenis Resistor yang nilai hambatan atau nilai resistansinya tergantung pada intensitas cahaya yang diterimanya.

2. Sensor PIR

Spesifikasi :

     Tegangan: 5V-20V
     Konsumsi daya: 65 mA
     TTL output: 3,3 V, 0V
     Waktu tunda: dapat disesuaikan (.3->5 menit)
     Waktu penguncian: 0,2 detik
     Metode pemicu: l - nonaktifkan pemicu berulang, H aktifkan pemicu berulang
     Rentang penginderaan: kurang dari 120 derajat, dalam jarak 7 meter
     Suhu: -15 ° ~ 70
     Dimensi: 32*24 mm, jarak antara sekrup 28mm, M2, Dimensi lensa diameter: 23mm


Komponen Output

1. Lampu

Lampu Listrik adalah suatu perangkat yang dapat menghasilkan cahaya saat dialiri arus listrik

2. Relay

Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch)

3. Motor DC    

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion)

3. Dasar Teori [kembali]
    a. Resistor
Resistor adalah komponen elektronika pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian elektronika. Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Resitor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm (V = I.R ).



Cara menghitung nilai resistansi resistor dengan gelang warna:

1. Masukkan angka langsung dari kode warna gelang pertama.

2. Masukkan angka langsung dari kode warna gelang kedua.

3. Masukkan angka langsung dari kode warna gleang ketiga.

4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n), ini merupakan nilai toleransi dari resistor.
 
    b. Sensor LDR

LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenainya. LDR juga dapat digunakan sebagai sensor cahaya. Nilai resistansi dari LDR bergantung pada intensitas cahaya. Semakin tinggi intensitas cahaya (siang hari) yang mengenainya, maka semakin kecil nilai resistansinya. Sebaliknya semakin rendah intensitas cahaya (malam hari) yang mengenainya, maka semakin besar nilai resistansinya.

Secara umum, sensor LDR memiliki nilai hambatan 200 Kilo Ohm saat intensitas cahaya rendah (malam hari) dan akan menurun menjadi 500 Ohm saat intensitas cahaya tinggi (siang hari).Umumnya sensor LDR digunakan pada rangkaian lampu otomatis pada rumah, taman, dan jalan raya.

Karakteristik sensor LDR

-Laju Recovery

Laju recovery merupakan suatu ukuran praktis dan suatu kenaikan nilai resistansi dalam waktu tertentu. Harga ini ditulis dalam K/detik, untuk LDR tipe arus harganya lebih besar dari 200K/detik(selama 20 menit pertama mulai dari level cahaya 100 lux), kecepatan tersebut akan lebih tinggi pada arah sebaliknya, yaitu pindah dari tempat gelap ke tempat terang yang memerlukan waktu kurang dari 10 ms untuk mencapai resistansi yang sesuai den-gan level cahaya 400 lux.

-Respon Spektral

Sensor Cahaya LDR (Light Dependent Resistor) tidak mempunyai sensitivitas yang sama untuk setiap panjang gelombang cahaya yang jatuh padanya (yaitu warna). Bahan yang biasa digunakan sebagai penghantar arus listrik yaitu tembaga, aluminium, baja, emas dan perak. Dari kelima bahan tersebut tembaga merupakan penghantar yang paling banyak, digunakan karena mempunyai daya hantaryang baik.

Karakteristrik umum dari sensor cahaya LDR adalah sebagai berikut:

1.    Tegangan maksimum (DC): 150V
2.    Konsumsi arus maksimum: 100mW
3.    Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ
4.    Puncak spektral: 540nm (ukuran gelombang cahaya)
5.    Waktu Respon Sensor : 20ms – 30ms
6.    Suhu operasi: -30° Celsius – 70° Celcius
 
 
   c. Sensor PIR

Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar.

Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.

Sensor PIR terdiri dari beberapa bagian yaitu :
a. Lensa Fresnel
Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

b. IR Filter
IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

c. Pyroelectric Sensor
Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32˚C, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

d. Amplifier
Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.

e. Komparator
Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.




Grafik Respon Sensor

a. PIR

1. Respon terhadap arah, jarak, dan kecepatan


Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR.

2. Respon terhadap suhu


Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR.
 
    d. Transistor NPN

Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal, stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki elektroda, yaitu basis, kolektor, dan emitor. Pada rangkaian kali ini digunakan transistor 2SC1162 bertipe NPN. Transistor ini diperumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor  yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis  melebihi arus pada kaki kolektor atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff  (saklar tertutup).



Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.
 
    e. Relay

Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

1. Electromagnet (Coil)

2. Armature

3. Switch Contact Point (Saklar)

4. Spring

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

- Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)

- Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

    f. Dioda

Diode (diode) adalah komponen elektronika aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Berikut ini adalah fungsi dari dioda antara lain:

•                     Untuk alat sensor panas, misalnya dalam amplifier.

•                     Sebagai sekering(saklar) atau pengaman.

•                     Untuk rangkaian clamper dapat memberikan tambahan partikel DC untuk sinyal AC.

•                     Untuk menstabilkan tegangan pada voltage regulator

•                     Untuk penyearah

•                     Untuk indikator

•                     Untuk alat menggandakan tegangan.

•                     Untuk alat sensor cahaya, biasanya menggunakan dioda photo.

Simbol dioda adalah :


Untuk menentukan arus zenner  berlaku persamaan:
 

Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.

    g. Lampu

Lampu Listrik adalah suatu perangkat yang dapat menghasilkan cahaya saat dialiri arus listrik. Arus listrik yang dimaksud ini dapat berasal tenaga listrik yang dihasilkan oleh pembangkit listrik terpusat (Centrally Generated Electric Power) seperti PLN dan Genset ataupun tenaga listrik yang dihasilkan oleh Baterai dan Aki.

 

Jenis Jenis Lampu Listrik

 

Seiring dengan perkembangan Teknologi, Lampu Listrik juga telah mengalami berbagai perbaikan dan  kemajuan. Teknologi Lampu Listrik bukan saja Lampu Pijar yang ditemukan oleh Thomas Alva Edison saja namun sudah terdiri dari berbagai jenis dan Teknologi. Pada dasarnya, Lampu Listrik dapat dikategorikan dalam Tiga jenis yaitu Incandescent Lamp (Lampu Pijar), Gas-discharge Lamp (Lampu Lucutan Gas) dan Light Emitting Diode (Lampu LED).

-Lampu Pijar (Incandescent Lamp)

Lampu Pijar atau disebut juga Incandescent Lamp adalah jenis lampu listrik yang menghasilkan cahaya dengan cara memanaskan Kawat Filamen di dalam bola kaca yang diisi dengan gas tertentu seperti  nitrogen, argon, kripton  atau hidrogen. Kita dapat menemukan Lampu Pijar dalam berbagai pilihan Tegangan listrik yaitu Tegangan listrik yang berkisar dari 1,5V hingga 300V.

Lampu Pijar yang dapat bekerja pada Arus DC maupun Arus AC ini banyak digunakan di Lampu Penerang Jalan, Lampu Rumah dan Kantor, Lampu Mobil, Lampu Flash dan juga Lampu Dekorasi.  Pada umumnya Lampu Pijar hanya dapat bertahan sekitar 1000 jam dan memerlukan Energi listrik yang lebih banyak dibandingkan dengan jenis-jenis lampu lainnya.

 

-Lampu Lucutan Gas (Gas discharge Lamp)

Lampu lucutan gas menghasilkan cahaya dengan mengirimkan lucutan elektris melalui gas yang terionisasi, misalnya pada plasma. Sifat lucutan gas sangat tergantung pada frekuensi atau modulasi arus listriknya. Biasanya, lampu lampu ini menggunakan gas mulia (argon, neon, kripton, dan xenon) atau campuran dari gas-gas tersebut. Sebagian besar lampu-lampu ini juga mengandung bahan-bahan tambahan, seperti merkuri, natrium, dan/atau halida logam.

 

-Lampu LED (Light Emitting Diode)

Lampu LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

    h. OpAmp

 Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.

 Simbol



Karakteristik IC OpAmp

• Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
• Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
• Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
• Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
• Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
• Karakteristik tidak berubah dengan suhu



Inverting Amplifier


Rumus:


Non Inverting


Rumus:


Komparator


Rumus:


Adder


Rumus:


Bentuk Gelombang


    i. Motor DC    

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.

 Prinsip Kerja Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

    j. Baterai

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel.

Prinsip operasi

Baterai mengubah energi kimia langsung menjadi energi listrik. Baterai terdiri dari sejumlah sel volta. Tiap sel terdiri dari 2 sel setengah yang terhubung seri melalui elektrolit konduktif yang berisi anion dan kation. Satu sel setengah termasuk elektrolit dan elektrode negatif, elektrode yang di mana anion berpindah; sel-setengah lainnya termasuk elektrolit dan elektrode positif di mana kation berpindah. Reaksi redoks akan mengisi ulang baterai. Kation akan tereduksi (elektron akan bertambah) di katode ketika pengisian, sedangkan anion akan teroksidasi (elektron hilang) di anode ketika pengisian. Ketika digunakan, proses ini dibalik. Elektrodanya tidak bersentuhan satu sama lain, tetapi terhubung via elektrolit. Beberapa sel menggunakan elektrolit yang berbeda untuk tiap sel setengah. Sebuah separator dapat membuat ion mengalir di antara sel-setengah dan bisa menghindari pencampuran elektrolit.

    h. Touch Sensor
Pengertian Sensor Sentuh (Touch Sensor) dan Jenis-jenisnya
    Tubuh manusia memiliki Panca Indera yang berfungsi untuk berinteraksi dengan lingkungan di sekitarnya. Konsep yang sama juga diterapkan pada mesin atau perangkat elektronik/listrik agar dapat melakukan interaksi dengan lingkungan disekitarnya. Oleh karena itu, berbagai jenis sensor pun diciptakan untuk melakukan tugas tersebut. Salah satu sensor tersebut adalah Sensor Sentuh atau Touch Sensor.
 
    Seperti namanya, Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.
Jenis-jenis Sensor Sentuh
Pengertian SENSOR SENTUH dan jenis-jenisnya (KAPASITIF DAN RESISTIF)
  • Sensor Kapasitif
  • Sensor Resistif

    Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

    Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

    Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

    Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

    Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

    Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

    Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.

Cara kerja

Mengetahui keberadaan dan lokasi suatu “sentuhan” di dalam suatu area dengan membaca titik-titik koordinat dari sumber sentuhan yang menempel pada layar. Pada kondisi ini touch sensor mengacu pada kontak atau sentuhan pada layar dengan menggunakan jari atau tangan. Teknologi ini juga bisa mengetahui sentuhan dari obyek pasif seperti stylus dan sejenisnya. Touch sensor merupakan sebuah monitor yang sensitif terhadap sentuhan dan tekanan (resistif), sehingga perangkat ini memiliki dua fungsi yaitu, sebagai perangkat output karena menampilkan informasi dan input karena menerima informasi. Data yang dihasilkan dari sentuhan ini tentunya adalah data mengenai posisi tangan kita yang menyentuh sinyal ultrasonic tersebut. Jika ini dilakukan secara kontinyu dan terdapat banyak sekali sensor gelombang ultrasonic pada media yang disentuhnya, maka jadilah sebuah perangkat touch sensor  yang dapat digunakan.
4. Simulasi Rangkaian [kembali]
    a. Prosedur Percobaan
  • Buka aplikasi Proteus
  • Pilih komponen yang dibutuhkan, pada rangkaian ini dibutukan komponen Relay, Motor DC, Sensor LM35, LED, Transistor NPN BC548, Octocoupler, Resistor, Op amp, Potensiometer, dan Mosfet
  • Rangkai setiap komponen menjadi rangkaian yang diinginkan
  • Ubah spesifikasi komponen sesuai kebutuhan

    b. Prinsip Kerja

Pada rangkaian ini, LDR dan R1 sebagai pembagi tegangan serta Motor DC sebagai pintu yang akan otomatis bergerak ketika PIR mendeteksi adanya infrared. Saat LDR tidak mendapakan cahaya (gelap) maka hambatan pada LDR semakin besar, yaitu > 1M dan R1 kecil, sehingga tegangan dari baterai menjadi sangat kecil dan arusnya tidak dapat mengalir ke kaki basis Transistor Q1 dan Transistor Q2 dan kemudian tidak dapat mengaktifkan relay RL1 karena tidak ada arus atau tegangan yang lebih kecil dari yang diperlukan.

Saat LDR mendapatkan cahaya maka hambatannya menjadi kecil < 100k sehingga tegangan dari baterai menjadi tidak banyak berkurang dan arusnya dapat mengalir ke kaki basis Transistor Q1 dan arus dari baterai dapat mengalir ke kaki kolektor Transistor Q1 yang kemudian arus dapat mengalir dari kaki emitor Transistor Q1 dan kemudian arus mengalir ke kaki basis Transistor Q2. Karena terdapat arus pada kaki basis Transistor Q2, maka arus dari baterai akan mengalir ke kaki kolektor Transistor Q2 dan arus keluar dari kaki emitor Transistor Q2. Arus ketika menuju kaki kolektor Transistor Q2 terlebih dahulu melewati relay sehingga mengaktifkan relay RL1.

Disisi lain, ketika sensor PIR berlogika 0, maka tidak akan ada tegangan yang dioutputkan dan arus tidak akan mengalir ke relay RL2 untuk diaktifkan. Sedangkan ketika sensor PIR berlogika 1, maka akan ada tegangan yang dioutputkan dan arus akan mengalir ke op-amp (Non-Inverting) dan tegangan akan diperkuat sehingga dapat menggerakkan motor DC dan mengaktifkan relay RL2.

Hubungan antara RL1 dan RL2 :
    c. Video


5. Download File [kembali]
  1. HTML [download]
  2. Datasheet Oscilloscope [download]
  3. Datasheet RC4136N [download]
  4. Datasheet Pir Sensor [download]
  5. Datasheet Touch Sensor [download]
  6. Download Library Pir Sensor [download]
  7. Download Library Touch Sensor [download]
  8. Datasheet Resistor [download]
  9. Datasheet Baterai [download]
  10. Datasheet Motor [download]
  11. Datasheet Voltmeter [download
  12. Datasheet Op Amp 741 [download]
  13. Download Rangkaian [download
  14. Download Video [download]

Komentar

Postingan populer dari blog ini

MODUL 4 - FILTER

MODUL 3 - OP-AMP

MODUL 1 - KARAKTERISTIK DIODA